手机浏览器扫描二维码访问
基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。所谓基因工程(geicengineering)是在分子水平上对基因进行操作的复杂技术。
它是用人为的方法将所需要的某一供体生物的遗传物质——dna大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的dna分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。
基因工程是指重组dna技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。
上游技术指的是基因重组、克隆和表达的设计与构建(即重组dna技术);而下游技术则涉及到基因工程菌或细胞或基因工程生物体的大规模培养以及基因产物的分离纯化过程。
基因工程是利用重组技术,在体外通过人工“剪切”和“拼接”等方法,对各种生物的核酸(基因)进行改造和重新组合,然后导入微生物或真核细胞内,使重组基因在细胞内表达,产生出人类需要的基因产物,或者改造、创造新特性的生物类型。
从实质上讲,基因工程的定义强调了外源dna分子的新组合被引入到一种新的寄主生物中进行繁殖。
这种dna分子的新组合是按工程学的方法进行设计和操作的,这就赋予基因工程跨越天然物种屏障的能力,克服了固有的生物种(species)间限制,扩大和带来了定向改造生物的可能性。这是基因工程的最大特点。
基因工程包括把来自不同生物的基因同有自主复制能力的载体dna在体外人工连接,构成新的重组的dna。然后送到受体生物中去表达,从而产生遗传物质的转移和重新组合。
基因工程要素:包括外源dna。载体分子,工具酶和受体细胞等。
一个完整的、用于生产目的的基因工程技术程序包括的基本内容有:(1)外源目标基因的分离、克隆以及目标基因的结构与功能研究。这一部分的工作是整个基因工程的基础,因此又称为基因工程的上游部分。
(2)适合转移、表达载体的构建或目标基因的表达调控结构重组。
(3)外源基因的导入。
(4)外源基因在宿主基因组上的整合、表达及检测与转基因生物的筛选。
(5)外源基因表达产物的生理功能的核实。
(6)转基因新品系的选育和建立,以及转基因新品系的效益分析。
(7)生态与进化安全保障机制的建立。
(8)消费安全评价。
基因工程最突出的优点是打破了常规育种难以突破的物种之问的界限,可以使原核生物与真核生物之间、动物与植物之间,甚至人与其他生物之间的遗传信息进行重组和转移。人的基因可以转移到大肠杆菌中表达,细菌的基因可以转移到植物中表达。
基因工程是在分子生物学和分子遗传学综合发展基础上于20世纪70年代诞生的一门崭新的生物技术科学。
这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖。能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。
第二个特征是,一种确定的dna小片段在新的寄主细胞中进行扩增,这样实现很少量dna样品‘拷贝‘出大量的dna,而且是大量没有污染任何其它dna序列的、绝对纯净的dna分子群体。
科学家将改变人类生殖细胞dna的技术称为“基因系治疗”(germliherapy),通常所说的“基因工程”则是针对改变动植物生殖细胞的。
无论称谓如何,改变个体生殖细胞的dna都将可能使其后代发生同样的改变。
20世纪初。基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。
事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌。其dna中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。
基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在米国,大约有一半的大豆和四分之一的玉米都是转基因的。
是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为。转基因的农产品更容易生长,也含有更多的营养(甚至药物)。有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用。尤其是会破坏环境。
诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。
毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。
比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。
随着dna的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由rna转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密。而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。
如果将一种生物的dna中的某个遗传密码片断连接到另外一种生物的dna链上去。将dna重新组织一下,就可以按照人类的愿望。设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。
这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,生物科学技术,就称为“基因工程”,或者说是“遗传工程”。基本操作步骤这个过程即为体外重组dna的过程。
首先选择目的基因所适合的运载工具,如质粒、病毒等,然后用同一种限制酶分别切割运载体和目的基因,使其产生相同的黏性末端。再加入适量的dna连接酶,在生物体外将目的基因的dna与运载体的dna结合起来,形成重组dna(或重组质粒)将重组的dna杂合分子,借鉴细菌或病毒侵染细胞的途径,转移到选定的生物体细胞中,使重组的dna在受体细胞中复制、转录、翻译得以表达。
把目的基因装在运载体上并通过运载体将目的基因运到受体细胞的这一过程,在一般情况下,转化成功率仅为百分之一。
为此遗传工程师们创造了低温条件下用氯化钙处理受体细胞和增加重组dna浓度的办法来提高转化率。
下凡(重修) 圣餐( 乱炖 H) 绿茵之谁与争锋 【暮光】永不绽放 蟲族小女王 沉沦 镜花 (反ABO) 凡人:开局夺舍墨居仁 权色之谋(军婚) 兔子不吃窝边草 公主殿下是否錯過了新手任務? 【西幻】龙族少女 108次做爱 诡话集 睡遍娱乐圈(NP) 色情直播遇到大佬挥金 昆仑一黍 快穿:每天都被肏哭 士兵突击袁朗之倒倒倒倒追史 与狐说 ( h)
关于天道图书馆张悬穿越异界,成了一名光荣的教师,脑海中多出了一个神秘的图书馆。只要他看过的东西,无论人还是物,都能自动形成书籍,记录下对方各种各样的缺点,于是,他牛大了!教学生收徒弟,开堂授课,调教最强者,传授天下。灼阳大帝,你怎么不喜欢穿内裤啊?堂堂大帝,能不能注意点形象?玲珑仙子,你如果晚上再失眠,可以找我嘛,我这个人唱安眠曲很有一套的!还有你,乾坤魔君,能不能少吃点大葱,想把老子熏死吗?这是一个师道传承,培养指点世界最强者的牛逼拉风故事。ps已有完本拳皇异界纵横八神庵无尽丹田等书,热血文,质量保证,可入坑!...
李逸飞,大唐前太子李贤之子,因其父被武则天毒害,从小就被逍遥老人收养,十年之后,学艺有成的李逸飞下山报仇,最后经过与武则天的一番较量终于将女皇降服,成功光复李唐江山,揽江山美人于一身,享受人间帝王之风流。...
(都市热血小说)叶龙曾是世界上公认的文武奇才,所到之处,再强大的敌人也得望风而逃。然而,就是这样的叱咤风云人物却突然放弃耀眼光环,回到灯红酒绿的都市保护大小姐!他性格冷酷张狂,为达到目的不择手段!凭借惊人的本能和超人的智力,在繁华的天骄市上演一场激情四射的热血人生!PS本书读者群128492045(豆丹家族)...
小医生蒋飞,正因为诊所生意太差而考虑关门大吉时,却意外被游戏人物附身,从此变得无所不能。不仅医术出神入化,生死人肉白骨,从阎王爷手中抢命就连厨艺琴艺园艺宠物驯养都全部精通!当别人以为这就是蒋飞全部本事时,蒋飞却笑眯眯地将目光看向了那一本本武学秘籍降龙十八掌六脉神剑北冥神功独孤九剑...
6远本是一个普通的学生,但有一天,他忽然成了龙,从此之后,他就开始牛逼起来本书已经上架,求订阅求评论求互动求推荐票求金钻求收藏!给我几分钟,让我们一起见证一个高中生的传奇!各位书友要是觉得潜龙还不错的话请不要忘记向您...
穿越2006,喜获神级教练系统。帮助姚麦夺冠,圆无数中国球迷心中的冠军梦。当雷霆四少留守俄城,一个崭新的支平民球队,又如何把不可一世的勇士王朝掀翻下马。一次穿越,一段关于有完本作品重生之安东尼篮神体坛之召唤猛将,人品有保证,放心收藏阅读。阅群539855046,进群需晒学徒以上粉丝值。...