云轩阁小说网

手机浏览器扫描二维码访问

第351章 布丁(第1页)

PSI为分类数据,取1表示接受了新的教学方法指导,0表示没有接受新的教学方法指导;GPA表示学生平均积分点,为数值型数据;TUC表示以往的学生成绩,为数值型数据。假如,想了解GPA、TUC和PSI对学生成绩是否有影响,以及预测学生学习成绩是否会提高,你会选择下述用哪个。

模型?为什么?(A.线性回归B.逻辑回归C.聚类D.关联规则挖掘)你的选择:逻辑回归你的解释:逻辑回归是一种广泛应用于分类问题的机器学习算法。在这个情况下,我们的目标是预测学习成绩是否提高,这是一个二分类问题,即学习成绩提高或不提高。逻辑回归可以用来建立一个概率模型,根据给定的特征值(GPA、TUC和PSI),计算出学生成绩提高的概率。逻辑回归模型的输出是一个概率值,表示学生成绩提高的可能性。这使得我们能够根据学生的特征值进行预测,并判断他们学习成绩是否会提高。此外,逻辑回归还可以提供每个特征的权重系数,帮助我们理解各个特征对学生成绩的影响程度。线性回归(A.线性回归)也可用于这个问题,但它更适用于连续数值型的目标变量的预测,而不是二分类问题。聚类(C.聚类)是无监督学习方法,不适用于这个情况。关联规则挖掘(D.关联规则挖掘)通常用于发现数据中的频繁项集和关联关系,不太适合用于预测学生成绩的问题。因此,在给出的选项中,选择使用逻辑回归模型(B.逻辑回归)是合适的,它可以用于预测学生学习成绩是否会提高,并了解GPA、TUC和PSI对学生成绩的影响程度。4、K-means算法在给定数据集上运行第一次后的结果为,数据集分为三个簇:cluster1:(1,3)、(2,4);cluster2:(4,0)、(2,0);cluster3:(0,3)、(0,5)。样本(0,3)和cluster2的质心之间的曼哈顿距离为:你的答案:5你的计算过程:Cluster2的质心:(4+2)2=3;0样本的坐标是(0,3),Cluster2的质心是(3,0)。将给定的点代入公式,我们有:d=|3-0|+|0-3|=|3|+|-3|=3+3=6。

。。

1Bagging(包装法):优势:Bagging通过随机有放回地对训练数据进行采样,每个基分类器独立训练,然后通过投票或平均等方式进行集成,能够有效降低过拟合风险,提高模型的泛化能力。它尤其适合在高方差的模型上使用,如决策树等。局限性:对于高偏差的模型来说,Bagging可能无法显着改善模型性能。此外,由于基分类器的独立性,Bagging不容易处理存在较强相关性的数据,比如时间序列数据。使用场景:Bagging通常用于分类和回归问题,在数据集较大且噪声相对较小的情况下表现良好。2Boosting(提升法):优势:Boosting通过迭代地训练一系列基分类器,并根据前一个分类器的性能对样本权重进行调整,使得基分类器逐渐关注于难以分类的样本。它能够有效提高模型的精度和泛化能力,尤其适合解决高偏差的问题。局限性:Boosting对噪声和异常值比较敏感,容易导致过拟合。此外,由于基分类器之间存在依赖关系,Boosting的训练过程相对较慢。使用场景:Boosting通常用于分类问题,在需要处理高偏差或低准确度的场景下表现出色。3Stag(堆叠法):优势:Stag通过在多个基分类器上构建一个元分类器来进行集成,可以充分利用各个基分类器的预测结果,进一步提升性能。通过允许使用更复杂的元分类器,Stag具有更强大的表达能力。局限性:Stag的主要挑战在于选择合适的元特征以及使用交叉验证避免数据泄露。此外,Stag通常需要更多的计算资源和时间来进行模型训练和预测。使用场景:Stag适用于各类机器学习问题,并且在数据集相对较大、前期已经进行了一定特征工程的情况下效果较好。

爱上她的理由  资深颜控闯荡娱乐圈  天灾末世小人物囤货带美女跑路了  白昼独行  抗战之烽火特勤组  强撩!暗哄!我怀了全球首富的崽  将军公主  闪婚后偏执大佬每天狂宠我  仙道衍  最强赛亚人传说  扮演岩王帝君多年后,我穿回来了  兽世重生,情敌太多狼夫哭唧唧  退婚当天,三崽带我闪婚千亿隐富  爸爸,求你,不要打我了  女魔头只想攻略她师叔  生子就变强,我一年365胎  盗墓:开局让吴二白暴揍黑瞎子  快穿:尤物穿成万人嫌工具人女配  我与十位,美女总裁的故事  西游之白话版  

热门小说推荐
慕少,你老婆又重生了

慕少,你老婆又重生了

她死不瞑目,在江边守了三天三夜,来收尸的却不是她丈夫看着男人轻吻自己肿胀腐烂的尸体,她心中撼动不已,暗下许诺如果能重生,一定嫁给他!后来,她真的重生了,却成了他妹妹(⊙o⊙)慕容承说你再敢死给我看,我不介意变个态,和尸体洞房。她欲哭无泪,我滴哥!你早就变态了好么?!轻松搞笑,重口甜爽,可放心阅读...

天美地艳男人是山

天美地艳男人是山

从农村考入大学的庾明毕业后因为成了老厂长的乘龙快婿,后随老厂长进京,成为中央某部后备干部,并被下派到蓟原市任市长。然而,官运亨通的他因为妻子的奸情发生了婚变,蓟原市急欲接班当权的少壮派势力以为他没有了后台,便扯住其年轻恋爱时与恋人的越轨行为作文章,将其赶下台,多亏老省长爱惜人才,推荐其参加跨国合资公司总裁竞聘,才东山再起然而,仕途一旦顺风,官运一发不可收拾由于庾明联合地方政府开展棚户区改造工程受到了中央领导和老百姓的赞誉。在省代会上,他又被推举到了省长的重要岗位。一介平民跃升为省长...

特种高手

特种高手

(都市热血小说)叶龙曾是世界上公认的文武奇才,所到之处,再强大的敌人也得望风而逃。然而,就是这样的叱咤风云人物却突然放弃耀眼光环,回到灯红酒绿的都市保护大小姐!他性格冷酷张狂,为达到目的不择手段!凭借惊人的本能和超人的智力,在繁华的天骄市上演一场激情四射的热血人生!PS本书读者群128492045(豆丹家族)...

时空冒险传奇

时空冒险传奇

我是空间的旅人,时间的行者我追逐真理,寻觅起源我行走诸天,求真万界我是传道者,亦是冒险家。另外,我真的很凶,超凶(看封面)!声明1本书尽量走合理认知世界的路线,有自己的观点设定,不喜勿扰!声明2本书中的内容并不真科学,并不全合理,因为没有实际基础,纯属作者菌的蘑菇想法,作者也写不出全无bug的小说。...

歌王

歌王

在我心中,曾经有一个梦,  要用歌声让你忘了所有的痛。  灿烂星空,谁是真的英雄,  平凡的人们给我最多感动。    重生平行世界,缔造歌王传奇!...

上门狂婿

上门狂婿

被丈母娘为难,被女神老婆嫌弃!都说我是一无是处的上门女婿!突然,家族电话通知我继承亿万家财,其实我是一个级富二代...

每日热搜小说推荐