手机浏览器扫描二维码访问
第一题是一道代数题,an是一道多项式之和,求证:当正整数n≥2时,a(n+1)<an。
刚看见这题的时候,陆时羡还有些没有思路,于是一下子就顿在那里了。
毕竟纯粹的代数题,非常考验人的逻辑联系思维能力。
难道连第一道证明题都做不出来?这已经是最简单的了。
陆时羡忽然紧张起来,如果连第一题都做不出来,绝对是对他后面题目解答的一个巨大打击。
他轻吐一口气,慢慢迫使自己平静下来。
越是紧张越不能着急。
陆时羡再次审题,忽然发现自己陷入了一个误区,证明这种比大小的题目,何必将其分别代入后再比呢?
他只需要转换一下思维方式。
A与B比大小也可以转换成A与B比差或者A与B比商。
如果A-B最后的结果大于零,或者AB的结果大于1,那就可以说明A大于B.
想到这,陆时羡的眼睛越来越亮。
他在草稿纸上飞快地验算,对于an式,可以利用乘法分配律将n+1单独分离出来。
再得出对任意的正整数n≥2,an-a(n+1)最后的简化式。
最后证明简化式大于零。
故a(n+1)<an。
此题得证。
将这道题解决,陆时羡长松一口气,开始看下一题。
第二题是一道平面解析几何。
题目大意是对勾函数和一条直线得到的两个交点,然后求交点在对勾函数上两条切线的交点轨迹是多少?
不得不说,如果逻辑思维能力不够,光是看题目就足够让你看晕了。
不过说起来,这种题还是陆时羡的强项,他在数学里最擅长的就是将图形转化成代数。
无非就是求交点的坐标。
根据给出的条件联立方程组,由题意知,该方程在(0,+∞)上有两个相异的实根x1、x2,故k≠1,且Δ(1)式u003d1+4(k?1)>0,两个实根之和(2)式与之积(3)式都大于零。
由此可以得出直线的斜率k的取值范围,最后对对勾函数进行求导
化简得到直线l1和l2的方程(4)式和(5)式
(4)式-(5)式得xp的函数表达式(6)式
将(2)(3)两式代入(6)式得xpu003d2
(4)式+(5)式得yp的函数表达式(7)式
将(2)(3)的组合式代入(7)式得2ypu003d(3?2k)xp+2,而xpu003d2,得ypu003d4?2k
根据斜率k的取值范围2<yp<2.5
即点P的轨迹为(2,2),(2,2.5)两点间的线段(不含端点)
陆时羡写完这题,考试时间已经只剩下四十分钟了。
第二道大题还真的不难,思路很简单,就是计算过程有些复杂,同时也比较费时间,光这一个题目就花了他几十分钟。
来不及吐槽,陆时羡赶紧望向第三大题,
设函数f(x)对所有的实数x都满足f(x+2π)u003df(x)。
求证:存在4个函数fi(x)(iu003d1,2,3,4)满足:
1963,在机修厂当厨师的日子 诡异来袭,娇软美人靠魅力逃生 四合院:我大伯父是易中海 诡异哭诉,快让他走吧! 我从不搞笑,只想继承遗产 时空大历险1:史前之旅 傅先生别跑,我追定你了 四合院:开局拒绝一大爷换房 大理寺少卿的漫漫追妻之路 农门医妃是个搅屎棍 快穿:又被大佬一见钟情了 穿越兽世:兽夫狂情,日日溺爱上瘾 观人有道 小心!少奶奶带着乌鸦嘴杀回来了 阴神司探 心动健身房 错惹腹黑千金后顾总缠恋不休 崩铁:我自逐火来,来此斩崩坏 我穿成摄政王不断作死的原配前妻 北美悍警:从洛城巡警开始
李逸飞,大唐前太子李贤之子,因其父被武则天毒害,从小就被逍遥老人收养,十年之后,学艺有成的李逸飞下山报仇,最后经过与武则天的一番较量终于将女皇降服,成功光复李唐江山,揽江山美人于一身,享受人间帝王之风流。...
某天,宋书航意外加入了一个仙侠中二病资深患者的交流群,里面的群友们都以‘道友’相称,群名片都是各种府主洞主真人天师。连群主走失的宠物犬都称为大妖犬离家出走。整天聊的是炼丹闯秘境炼功经验啥的。突然有一天,潜水良久的他突然发现群里每一个群员,竟然全部是修真者,能移山倒海长生千年的那种!啊啊啊啊,世界观在...
师父死了,留下美艳师娘,一堆的人打主意,李福根要怎么才能保住师娘呢?...
这小小的四合院,住着一群租房客,而陈阳则是房东。...
为了救一个小女孩,刚刚毕业的萧奇博士,从美国穿越回了八年前的中国,回到了自己的高中时代。重生之后,萧奇紧接着要做的,就是要帮忙性格淡然又才华出众的父亲,至少从副科级小官连升七级,青云直上,坐到副省级高官的位置,才不枉费了父亲一辈子的正直和善良。对于前世辜负和错过的女孩子,萧奇也下了决心,一定要努力给予她们幸福,不要...
段飞是个倒霉的孩子,老爹被人陷害入狱,又遭遇对象退婚,开间小诊所给村里的人治病,连温饱都不行。可他从未放弃过努力,他坚信只要人不死,必定有站在人生巅峰的那天,最后他用枚小小的银针走上复仇之路,凭精湛的针灸获得无数美女青睐陪伴。这是个励志故事,段飞的崛起之路经受无数阴谋陷害,可他为了坚守正义毫不畏惧,视死如归跟邪恶力量做斗争。...