手机浏览器扫描二维码访问
公理E意即:如果a不知道p,那么他知道他不知道p。该公理又称“负的反省公理”、“智慧公理”。人们对这个公理往往持有异议:不是每个人都能够像苏格拉底那样“知道自己无知”;通常是,人们既然对某个事实无知,他并不一定知道自己对该事实无知。 电子书 分享网站
公共知识与博弈(2)
公共知识是一个群体人们之间的对某个事实的知识;它尽管为最近发展起来的概念,但该概念可追溯到休谟。《人性论》是一本伟大的哲学著作,休谟在27岁时将该书写成并出版(1738年)。在该书中有了公共知识这个概念的萌芽。逻辑学家刘易斯()在1969年给出严格的定义,他认为公共知识就是每个人都知道,每个人知道每个人都知道……依此类推。1976年博弈论专家奥曼()将公共知识引入博弈理论的研究。
奥曼在《不一致的达成》(Agreeing to disagree,1976)中对公共知识的定义如下:如果1和2两个人都知道E事件,1知道2知道E事件,2知道1知道E事件,1知道2知道1知道E事件,依此类推,那么我们就称1和2对于E事件具有公共知识。
从这个定义中可知,公共知识涉及一群体的对某个事实“知道”的结构。8在日常生活中,许多事实是公共知识,如:“所有人均会死”、“所有鸟均能飞(鸵鸟除外)”,对于它们,所有人均知道(智力有障碍者及婴儿除外),并且所有人知道其他人知道,当然其他人也知道别人知道他知道……
公共知识是相对于某个群体的。有些知识只属于某个人,它当然不是公共知识。科学家知道是其他人所不知道的知识,这些知识能够成为该科学家群体的公共知识,若科学家将之公布于众,该知识便成为整个社会的公共知识。
对任何一个博弈来说,“参与人是理性的”是起码的公共知识要求。对于像囚徒困境这样的完全信息博弈,双方的不同策略下的支付也是公共知识;在曹操和诸葛亮之间华容道上的博弈中,双方各种策略组合下的支付也是公共知识。
在有些博弈中,各种策略下的支付不能成为公共知识。比如在商战中,相互竞争的各方不知道其他商家在各种产量下的赢利情况,此时,策略下的支付不是公共知识。
对于不完全信息博弈,存在许多情况,在每个情况下,知识分布的不同博弈结果不一样。这里本书不分析群体行动中知识的分布,只是说明,知识分布的不同影响博弈参与人的策略选择,因而影响到博弈结果的最终形成。
任一互动的群体都存在一定的公共知识。在公共知识一定的情况下经过一段时间,群体达到了均衡。此时若公共知识发生改变,群体的均衡便发生改变。
上述分析有些抽象,读起来令人乏味,现在让我们来看看具体例子中的公共知识情况。通过这些例子,读者就能明白什么是公共知识、明白公共知识如何影响到群体的均衡,熟悉了公共知识的概念,读者就可以用它来分析身边的社会现象。
书 包 网 txt小说上传分享
一个寓言——村庄里的大屠杀
在一个偏僻的山里,有一个村庄。这里是女人掌权,女人对一切事务说了算。村里有100对夫妇。
在这个村里已经形成了约定俗成的规定。如果女人发现自己的丈夫对自己不忠的话,就会毫不犹豫地将他杀死,而且就在当天执行。当然,她必须有确切的证据来证明她丈夫不忠。由于这个因素,某个女人发现某个男人不忠,她不会将之告诉那个不忠男人的妻子。但是,她会告诉其他人的妻子,并且女人们会相互传递这一信息,因此,一个男人不忠,除了其妻子不知道外,其他女人都知道。
而事实上是,村子里的这100对夫妇的男人都不忠,但由于女人不会将她知道的事实告诉不忠男人的妻子,每个女人都不知道自己的男人不忠。因此,该村子一直很稳定,而没有发生妻子杀死丈夫的行为。
村子里有一个辈份很高的老太太,她德高望重,诚实可敬。每个人都向她汇报村里的情况,因此她对村里的情况了如指掌,她知道这个村子里的所有男人都不忠,当然,其他女人不知道她所知道的东西。
一天,这位老人对这100个女人说了一句很平常的话:“你们的男人当中至少有一个是不忠的。”于是,村里发生了这样一个事情:前99天,村里风平浪静,但到了第100天,村里发生了一场大屠杀,所有的女人都杀死了她们的丈夫。
故事就是这样的。
为什么会这样?
这是一个推理和行动的过程。如果她的丈夫不忠的话,她就杀死他;如果没有证据证明她的丈夫不忠的话,她便相信他,不杀死他。
如果村里只有一个男人是不忠的话,在老太太作了宣布之后的第一天,这个男人的妻子在老太太宣布之后马上就能知道。因为,她会作这样一个推理:如果其他男人不忠的话,她应当事先知道,既然其他99个男人都没有不忠,并且至少有一个男人不忠,那么这个不忠的男人必定就是她的丈夫。因此,村里如果只有一个男人不忠的话,老太太宣布之后,当天这个男人就会被其妻子杀死。
如果村里有两个男人不忠,那么,这两个男人的妻子在老太太做了宣布的第一天都不会怀疑到自己的丈夫,因为这两个妻子的每一个知道另外一个女人的丈夫不忠。但是,当第一天过后她没有发现那个不忠诚的男人被杀死,那么她会想,必定有两个男人是不忠的,否则她知道的那个不忠的男人会被他的妻子当天杀死的。既然有两个男人不忠,但这两个不忠的男人的妻子想,她只知道一个,那么另一个不忠的男人必定是她的丈夫!
……
这个村子里的100个男人不忠,那么,上面这样推理会继续到99天。就是说,前99天每个女人都没怀疑到自己的丈夫,而当第100天的时候,每个女人都确定地推理出她的丈夫不忠,于是村子里便发生了一场大屠杀,所有的男人都被他们的妻子杀死。
推理就是这样进行的。
这里,在老太太宣布“至少一个男人是不忠的”这样一个事实时,每个女人其实都知道这个事实(她们也知道村子里的规则),似乎是,老太太对这个事实的宣布并没有增加这些女人的知识——关于村里男人不忠行为的知识。但为什么老太太的宣布使得村里的女人产生了对她们丈夫的屠杀行为呢?这是因为,老太太的宣布使得这个群体里的女人的知识结构发生了变化:“至少一个男人是不忠的”在老太太做宣布之前是每个女人的知识,宣布之后仍然是她们的知识,但它在老太太宣布之前不是公共知识,老太太的宣布使得它成为公共知识。
如何理解这种变化?设想一下,假定共有3个女人A、B、C,那么在未宣布之前,A想:由于自己不知道自己的丈夫不忠,其他两个女人B、C也同样不知道,那么A想B不知道C是否知道“至少有一个男人是不忠的”。而当老太太宣布了“至少一个男人是不忠的”之后,“至少一个男人是不忠的”便成了A、B、C之间的公共知识。
在这个100人组成的小村里,老太太的宣布使得“至少一个男人是不忠的”成了公共知识。于是,推理与行动便开始了。这是大屠杀的原因!
。。
帽子:红色的还是白色的?
与上述故事相同结构的一个事例是“帽子的颜色问题”。在“帽子的颜色问题”中,同样是公共知识不断公布,推理不断进行的过程。
有一群人围坐在一起,为了便于分析,我们假定有4人(人数为其他数字,可作同样分析)。这4个人每人头戴一顶帽子,帽子为红色和白色两种中的一种。每个人看不到自己帽子的颜色,但能看到别人帽子的颜色。因此,每个人不能看到自己头上的帽子的颜色。
一个局外人来到他们的群体当中,对他们说:“你们其中至少一位头戴的是红色的帽子。”当他说了这句话后,他问:“你们知道你们头上的帽子的颜色吗?”4个人都说“不知道”;这个局外人第?
一醉山庄之红楼香灯醉吟惜 我想追你,可以吗 天王 听说你混六扇门gl 你在戏弄我 我死后,仙尊为我入魔了 菲斯王族之天空与新生 在恋综遇到豪门前夫了 本公子真的柔弱可欺 反派只想躺平(科举) 无耻信徒 和死对头上恋综后爆红了[娱乐圈] 乌野投资人,但入学了稻荷崎[排球] 一出好戏 转生成破灭的幕后反派简直大失败[女尊] 易中天直面地方官员访谈录:成都方式 位面海岛经营中! 卖女孩的小火柴 大师兄 炮灰路人甲总在装深情
李逸飞,大唐前太子李贤之子,因其父被武则天毒害,从小就被逍遥老人收养,十年之后,学艺有成的李逸飞下山报仇,最后经过与武则天的一番较量终于将女皇降服,成功光复李唐江山,揽江山美人于一身,享受人间帝王之风流。...
某天,宋书航意外加入了一个仙侠中二病资深患者的交流群,里面的群友们都以‘道友’相称,群名片都是各种府主洞主真人天师。连群主走失的宠物犬都称为大妖犬离家出走。整天聊的是炼丹闯秘境炼功经验啥的。突然有一天,潜水良久的他突然发现群里每一个群员,竟然全部是修真者,能移山倒海长生千年的那种!啊啊啊啊,世界观在...
师父死了,留下美艳师娘,一堆的人打主意,李福根要怎么才能保住师娘呢?...
这小小的四合院,住着一群租房客,而陈阳则是房东。...
为了救一个小女孩,刚刚毕业的萧奇博士,从美国穿越回了八年前的中国,回到了自己的高中时代。重生之后,萧奇紧接着要做的,就是要帮忙性格淡然又才华出众的父亲,至少从副科级小官连升七级,青云直上,坐到副省级高官的位置,才不枉费了父亲一辈子的正直和善良。对于前世辜负和错过的女孩子,萧奇也下了决心,一定要努力给予她们幸福,不要...
段飞是个倒霉的孩子,老爹被人陷害入狱,又遭遇对象退婚,开间小诊所给村里的人治病,连温饱都不行。可他从未放弃过努力,他坚信只要人不死,必定有站在人生巅峰的那天,最后他用枚小小的银针走上复仇之路,凭精湛的针灸获得无数美女青睐陪伴。这是个励志故事,段飞的崛起之路经受无数阴谋陷害,可他为了坚守正义毫不畏惧,视死如归跟邪恶力量做斗争。...