云轩阁小说网

手机浏览器扫描二维码访问

第四十九章 杨辉三角(第1页)

杨辉三角形,一目了然,每个数等于它上方两数之和。

研究过《九章》、《缉古》、《缀术》、《海岛》这些算法的楚衍说:“我发现了一个奇特三角,每行数字左右对称,由1开始逐渐变大。”

1050年写过《释锁算术》的贾宪说:“这个三角第n行的数字有n项。”

1261年,写过《详解九章算法》的杨辉说:“这个三角形前n行共[(1+n)n]2个数。”

1303年朱世杰说:“第n行的m个数可表示为C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。”

1427年,写过《算术的钥匙》的阿拉伯人阿尔·卡西说:“第n行的第m个数和第n-m+1个数相等,为组合数性质之一。”

1527年德国人阿皮亚纳斯说:“每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即C(n+1,i)=C(n,i)+C(n,i-1)。”

1544年,写过《综合算术》的德国人米歇尔.斯蒂费尔说:“这是二项式展开式系数,其中(a+b)n的展开式中的各项系数依次对应三角的第(n+1)行中的每一项。”

斐波那契说:“将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。”

1545年法国的薛贝尔说:“将第n行的数字分别乘以10^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。11^0=1,11^1=1x10^0+1×10^1=11,11^2=1×10^0+2x10^1+1x10^2=121,11^3=1x10^0+3×10^1+3x10^2+1x10^3=1331,11^4=1x10^0+4x10^1+6x10^2+4x10^3+1x10^4=,11^5=1x10^0+5x10^1+10x10^2+10x10^3+5x10^4+1×10^5=。”

1654年,写过《论算术三角形》的帕斯卡说:“第n行数字的和为2^(n-1)。1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+10+10+5+1=2^(6-1)。”

这个被欧洲人称之为帕斯卡三角形。

1708年的PierreRaymonddeMontmort说:“斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=10,1+3=4,1+3+6=10,1+4=5。”

1730年的亚伯拉罕·棣·美弗说:“将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+10+6+1=21,1+10+15+7+1=34,5+20+21+8+1=55。”

后来人们也称呼这是中国三角形。

二维的杨辉三角有多项式系数,晶体晶格,单形的点线面或者是四维体,五维体等等这样的有价值的东西。其中是亏格为0的欧拉定理。对图论有重大帮助。对很多等差,甚至一级数列、二级数列等等有重要研究。

那三维的杨辉三角,肯定会有更加重要的信息。

高维的杨辉三角,肯定更加有价值。

或许轻松包括斐波那契数列,包括多亏格多面体的点线面等复杂信息。

或许杨辉三角是任何一个数学的终点。

近下来,就需要解决高维杨辉三角的数列问题了。有没有一种简单的办法来。

其中一个最重要的问题,就是二维的杨辉三角是否可以解决高维的杨辉三角问题?这也意味着,高维的杨辉三角简化成二维的杨辉三角问题。

这样的杨辉三角问题,是不是跟形数有关呢?有关系的话,是不是就变成了形数的问题?

喜欢数学心请大家收藏:()数学心

暗无  穿成商户女摆烂,竟然还要逃难!  永恒大陆之命运  混迹娱乐圈的日子  我一枪一剑杀穿大陆  新人驾到  农夫是概念神?三叶草了解一下!  我的徒弟不对劲  国运:拥有多重身份的我很合理吧  在下潘凤,字无双  玄灵界都知道我柔弱可怜但能打  重生在宝可梦,我的后台超硬  快穿之炮灰得偿所愿  宗门全是美强惨,小师妹是真疯批  哦豁!虐文炮灰不干了!  译文欣赏:博伽瓦谭  穿到八零,我自带锦鲤系统!  摊牌了,我爹是绝顶高手!  至尊战皇  大明:开局气疯朱元璋,死不登基  

热门小说推荐
超强神龙进化系统

超强神龙进化系统

从小在孤儿院长大的敖问,一次意外死亡,重生为蛇,但是上天赐予他神龙进化系统这系统可以穿越万界,可以帮助他蜕蛇成龙!从此敖问为了不想平凡过完一生,开始了轰轰烈烈的进化之路。敖问可以跟人类结婚生子吗?系统你自己试试看,不就知道了吗?黑暗流无敌流装逼流微度PS胆小慈悲心勿进。...

奶爸至尊

奶爸至尊

肉身不破,灵魂不灭,为了回到穿越前,为了再见到他可爱的女儿,不断引起星域乱战,一个不死强者,重启纪元,回归平凡,从此一个无敌奶爸诞生了。续集,正在新书连载着...

我是至尊

我是至尊

药不成丹只是毒,人不成神终成灰。天道有缺,人间不平,红尘世外,魍魉横行哀尔良善,怒尔不争规则之外,吾来执行。布武天下,屠尽不平手中有刀,心中有情怀中美人,刀下奸雄冷眼红尘,无憾今生。惊天智谋,踏破国仇家恨铁骨柔肠,演绎爱恨情仇绝世神功,屠尽人间不平丹心碧血,谱写兄弟千秋!...

猎美玉龙

猎美玉龙

看书名就知道,我们的猪脚究竟要干什么!请耐心看下去,你不会失望的!京华市委书记的儿子荆天,16岁,仗着老子是京华市的一把手,在学校里是个问题学生,回到家却乖的不得了,这个两面少年,无意中从一枚祖传古戒中得到一种神奇的功法,从此之后,他的人生,发生了巨大的变化。学习成绩陡然上升,少女少妇看到他就美眸放光,将市委大院里的RQ收了之后,他便将魔爪伸向了校园,伸向了整个京华市的各个部门,只要他见到的美女,就想方设法归于自己麾下,邪恶而轻松的猎美之旅,充满着令人拍案的奇妙遭遇,是艳遇还是刻意追求?敬请期待...

1号新妻:老公,宠上瘾!

1号新妻:老公,宠上瘾!

被继母逼迫,她走投无路,和神秘富豪签定协议嫁进豪门。婚后三年,富豪老公把她宠上天。只除了没有生下继承人。豪华别墅里,裴七七气愤地将报纸砸在男人身上这上面说我是不下蛋的母鸡,唐煜,明明就是你的问题。男人放下报纸,一本正经地赞同小妻子的话怎么能乱写呢,你分明属猪!唐!煜!她气得跳脚!男人轻笑有没有孩...

功法修改器

功法修改器

石焱携功法修改器重生入九域玄幻世界,人族挣扎求生。九域世界以游戏形式发售面世。当有一日,两界融合,妖魔肆虐而来。石焱内测进入九域世界,这一日,游戏尚未发售,玩家尚未进入,妖魔尚未影响书友Q群371073565...

每日热搜小说推荐