云轩阁小说网

手机浏览器扫描二维码访问

第301章 密码(第1页)

基于聚类的离散化假设我们有一个包含1000个房屋的价格数据的数据集,我们想将价格分成5个簇,以下是离散化方法:首先,随机分配5个中心点。根据每个房屋的价格和这5个中心点的距离,将每个房屋分入距离最近的中心点对应的簇中。重新计算每个簇的中心点,以中心点的坐标作为新的中心点。重复步骤2和步骤3,直到中心点的移动小于某个阈值或达到最大迭代次数。最终得到的5个簇即为我们需要的离散化结果。自适应离散化假设我们有一个包含个商品销售量数据的数据集,我们想将销售量离散化成n个区间,以下是离散化方法:先将所有商品销售量根据大小排序。初始时,将数据集分成n个区间,每个区间保持相等的数据数量。计算每个区间的范围(最小值和最大值),并计算相邻区间的范围的中点,这些中点作为新的分割点。根据新的分割点重新划分区间,如果新的区间与原来的区间相同,则算法停止。否则,重复步骤3和步骤4。最终得到的n个区间即为我们需要的离散化结果。卷积核输出形状卷积神经网络中的卷积层的输出维度计算,可以通过以下公式得出:输出的高度=(输入的高度-卷积核的高度+2*padding)步长+1输出的宽度=(输入的宽度-卷积核的宽度+2*padding)步长+1输出的深度=卷积核的数量这里,padding是指在输入数据周围填充的0的行数或列数(在计算输出大小时有助于保持空间尺寸不变),步长是指卷积核移动的步数。输出的深度直接取决于我们使用的卷积核的数量。输入数据大小为32x32大小单通道图片,在C1卷积层使用6个大小为5x5的卷识核进行卷积,padding=0,步长为1通过6个大小为5x5的卷识核之后的输出是多大尺寸的,怎么用公式计算给定:输入的高度H=32;输入的宽度W=32;卷积核的高度KH=5;卷积核的宽度KW=5;卷积核的数量K=6;步长S=1;PaddingP=0根据上述公式,我们可以计算出卷积后的输出尺寸:输出的高度=(H-KH+2P)S+1=(32-5+2*0)1+1=28输出的宽度=(W-KW+2P)S+1=(32-5+2*0)1+1=28输出的深度=K=6所以,通过6个大小为5x5的卷积核后的输出尺寸为28x28x6。

留出法(HoldoutMethod):基本思想:将原始数据集划分为训练集和测试集两部分,其中训练集用于模型训练,而测试集则用于评估模型的性能。实施步骤:根据比例或固定的样本数量,随机选择一部分数据作为训练集,剩余部分用作测试集。优点:简单快速;适用于大规模数据集。缺点:可能由于训练集和测试集的不同导致结果的方差较高;对于小样本数据集,留出的测试集可能不够代表性。2交叉验证法(Cross-Validation):基本思想:将原始数据集划分为K个大小相等的子集(折),其中K-1个子集用于训练模型,剩下的1个子集用于测试模型,这个过程轮流进行K次,最后将K次实验的结果综合得到最终的评估结果。实施步骤:将数据集随机划分为K个子集,依次选择每个子集作为验证集,其余子集作为训练集,训练模型并评估性能。重复这个过程K次,取K次实验的平均值作为模型的性能指标。优点:更充分利用了数据;可以减小因样本划分不同而引起的方差。缺点:增加了计算开销;在某些情况下,对于特定划分方式可能导致估计偏差。3自助采样法(Bootstrapping):基本思想:使用自助法从原始数据集中有放回地进行有偏复制采样,得到一个与原始数据集大小相等的采样集,再利用采样集进行模型训练和测试。实施步骤:从原始数据集中有放回地抽取样本,形成一个新的采样集,然后使用采样集进行模型训练和测试。优点:适用于小样本数据集,可以提供更多信息;避免了留出法和交叉验证法中由于划分过程引入的变化。缺点:采样集中约有36.8%的样本未被采到,这些未被采到样本也会对模型性能的评估产生影响;引入了自助抽样的随机性。拓展:选择何种数据集划分方法应根据以下因素进行综合考虑:1数据集大小:当数据集较大时,留出法能够提供足够的训练样本和测试样本,而且计算开销相对较小。当数据集较小时,交叉验证法和自助采样法能更好地利用数据。

这章没有结束,请点击下一页继续阅读!

2计算资源和时间限制:交叉验证需要多次训练模型并评估性能,所以会增加计算开销;自助采样法则需要从原始数据集中进行有放回的采样,可能导致计算成本上升。如果计算资源和时间有限,留出法可能是更可行的选择。3数据集特点:如果数据集具有一定的时序性,建议使用留出法或时间窗口交叉验证,确保训练集和测试集在时间上是连续的。如果数据集中存在明显的类别不平衡问题,可以考虑使用分层抽样的交叉验证来保持类别比例的一致性。4评估结果稳定性要求:交叉验证可以提供多个实验的平均结果,从而减少由于随机划分带来的方差。如果对评估结果的稳定性要求较高,交叉验证是一个不错的选择。总而言之,没有一种数据集划分方法适用于所有情况。选择合适的方法应根据具体问题的需求、数据集的大小以及可用的资源和时间来进行综合考虑,并在实践中进行实验比较以找到最佳的划分方式。2、请列举模型效果评估中准确性、稳定性和可解释性的指标。1准确性:准确率(Accuracy):预测正确的样本数量与总样本数量的比例。精确率(Precision):预测为正类的样本中,真实为正类的比例。召回率(Recall):真实为正类的样本中,被模型预测为正类的比例。F1值(F1-Score):综合考虑了精确率和召回率的调和平均,适用于评价二分类模型的性能。2稳定性:方差(Variance):指模型在不同数据集上性能的波动程度,方差越大说明模型的稳定性越低。交叉验证(CrossValidation):通过将数据集划分为多个子集,在每个子集上训练和评估模型,然后对结果进行平均,可以提供模型性能的稳定估计。3可解释性:特征重要性(FeatureImportance):用于衡量特征对模型预测结果的贡献程度,常用的方法包括基于树模型的特征重要性(如GiniImportance和PermutationImportance)以及线性模型的系数。4可视化(Visualization):通过可视化模型的结构、权重或决策边界等,帮助解释模型的预测过程和影响因素。5SHAP值(SHapleyAdditiveexPlanations):一种用于解释特征对预测结果的贡献度的方法,提供了每个特征对最终预测结果的影响大小。这些指标能够在评估模型效果时提供关于准确性、稳定性和可解释性的信息,但具体选择哪些指标要根据具体任务和需求进行综合考虑。

喜欢离语请大家收藏:()离语

抗战之烽火特勤组  将军公主  资深颜控闯荡娱乐圈  退婚当天,三崽带我闪婚千亿隐富  兽世重生,情敌太多狼夫哭唧唧  我与十位,美女总裁的故事  爱上她的理由  天灾末世小人物囤货带美女跑路了  扮演岩王帝君多年后,我穿回来了  白昼独行  女魔头只想攻略她师叔  爸爸,求你,不要打我了  仙道衍  快穿:尤物穿成万人嫌工具人女配  闪婚后偏执大佬每天狂宠我  强撩!暗哄!我怀了全球首富的崽  西游之白话版  最强赛亚人传说  盗墓:开局让吴二白暴揍黑瞎子  生子就变强,我一年365胎  

热门小说推荐
巫师再临

巫师再临

超凡力量回归,巫师也从历史的尘埃中再度降临,站在超凡力量回归的浪潮顶端,沙兰于尘埃和无数位面之中寻找巫师的真意,总有一天,真正的巫师将再临世间。...

快穿:炮灰打脸攻略

快穿:炮灰打脸攻略

炮灰是什么?雪兰告诉你,炮灰是用来打别人脸的。凭什么炮灰就要为男女主的感情添砖加瓦,凭什么炮灰就要任人践踏?凭什么炮灰就要为男女主献上膝盖?凭什么炮灰就要成为垫脚石?炮灰不哭,站起来撸!本文男女主身心干净,秉持着宠宠宠的打脸原则,男主始终是一个人哦!...

修罗天帝

修罗天帝

八年前,雷霆古城一夜惊变,少城主秦命押入青云宗为仆,二十万民众赶进大青山为奴。八年后,淬灵入武,修罗觉醒,不屈少年逆天崛起。给我一柄刀,可破苍穹,给我一柄剑,可指霄汉。金麟岂是池中物,一遇风云便化龙。当修罗子不死王雷霆战尊古海蛮皇等等一个个封号落在秦命身上,这个一身傲骨的少年踏天而行,带领一众挚友红颜,傲战八...

爆宠八零:重生娇娇女

爆宠八零:重生娇娇女

2o19云起华语文学征文大赛参赛作品胖喵儿死了,被一根鸡骨头卡死了!重生在了一个生了九个孙儿,盼孙女盼的眼睛都红了的阮家,瞬间成了阮家上下三代的团宠!胖喵儿笑眯眯,觉得这有奶奶宠,爸妈爱,哥哥护的小日子,真叫一个美滋滋哟。当然,如果没有某只躲在角落里,眼睛里放着绿光,死死盯着她的‘大灰狼’,那就更好了!某只‘大灰狼’冷笑一声上辈子没吃到,这辈子总要吃到的!胖喵儿へノ...

时空冒险传奇

时空冒险传奇

我是空间的旅人,时间的行者我追逐真理,寻觅起源我行走诸天,求真万界我是传道者,亦是冒险家。另外,我真的很凶,超凶(看封面)!声明1本书尽量走合理认知世界的路线,有自己的观点设定,不喜勿扰!声明2本书中的内容并不真科学,并不全合理,因为没有实际基础,纯属作者菌的蘑菇想法,作者也写不出全无bug的小说。...

1号新妻:老公,宠上瘾!

1号新妻:老公,宠上瘾!

被继母逼迫,她走投无路,和神秘富豪签定协议嫁进豪门。婚后三年,富豪老公把她宠上天。只除了没有生下继承人。豪华别墅里,裴七七气愤地将报纸砸在男人身上这上面说我是不下蛋的母鸡,唐煜,明明就是你的问题。男人放下报纸,一本正经地赞同小妻子的话怎么能乱写呢,你分明属猪!唐!煜!她气得跳脚!男人轻笑有没有孩...

每日热搜小说推荐